Xingrui WANG

Education Background

Whiting School of Engineering, Johns Hopkins University;	Baltimore, MD
Ph.D. in Computer Science; GPA: 4.00 / 4.00;	08/2023- Present
Advisor: Alan L. Yuille.	
Viterbi School of Engineering, University of Southern California	Los Angeles, CA
M.S. in Applied Data Science; GPA: 3.92 / 4.00	08/2021- 05/2023
School of Statistics, Renmin University of China	Beijing, China
B.S. in Statistics; Minor in Data Science; GPA: 87.04 / 100	09/2017- 07/2021

Publications

T ublications
[1] PulseCheck457: A Diagnostic Benchmark for Comprehensive Spatial Reasoning of Large Multimodal Models.
Xingrui Wang, Wufei Ma, Tiezheng Zhang, Celso M de Melo, Jieneng Chen, Alan Yuille.
Conference on Computer Vision and Pattern Recognition (CVPR) 2025
TL; DR: A benchmark for comprehensive 6D spatial reasoning of large vision language models.
[2] Compositional 4D Dynamic Scenes Understanding with Physics Priors for Video Question Answering
Xingrui Wang, Wufei Ma, Angtian Wang, Shuo Chen, Adam Kortylewski, Alan Yuille.
International Conference on Learning Representations (ICLR) 2025.
TL; DR: A video question answering benchmark and model for 4D physical properties of objects from 3D space.
[3] 3D-Aware Visual Question Answering about Parts, Poses and Occlusions.
Xingrui Wang, Wufei Ma, Zhuowan Li, Adam Kortylewski, Alan Yuille. 3D-Aware Visual Question Answering about Parts
Poses and Occlusions.
Advances in Neural Information Processing Systems (NeurIPS), 2023
TL; DR: A benchmark and model for 3D scene understanding in vision question answering, particularly parts, poses, and
occlusions.
[4] Super-CLEVR: A Virtual Benchmark to Diagnose Domain Robustness in Visual Reasoning
Zhuowan Li, Xingrui Wang , Elias Stengel-Eskin, Adam Kortylewski, Wufei Ma, Benjamin Van Durme, Alan Yuille.
Conference on Computer Vision and Pattern Recognition (CVPR) Highlight, 2023
TL; DR: A diagnosis dataset analyzes the factors of domain shift in vision question answering models.
[5] Contributions of Shape, Texture and Color in Visual Recognition
Yunhao Ge*, Yao Xiao*, Zhi Xu, Xingrui Wang , Laurent Itti.
European Conference on Computer Vision (ECCV), 2022
TL; DR: A human-inspired object recognition network which considers the disentangled shape, texture, and color from image
[6] Towards Language Hint Attention Reinforcement Learning.
Haoyu Liu, Yang Liu, Xingrui Wang , Hanfang Yang.
IEEE World Congress on Computational Intelligence (<i>WCCI</i>), 2022
TL; DR: A human assisted high-efficient reinforcement learning model.
[7] Large Scale GPS Trajectory Generation Using Map Based on Two Stage GAN
Xingrui Wang , Xinyu Liu, Ziteng Lu, Hanfang Yang,
Journal of Data Science. 19(2021), no. 1, 126-141. DOI 10.6339/21-JDS1004
<i>TL; DR: A map conditioned GPS trajectory data generation mode with GANs.</i>
Working Experience

Advanced Micro Devices, Inc. | Research Intern

06/2024- present

- Advisor: Dr. Jiang Liu.
- Research Topic: Multimodal conditioning video generation.
- Project Description: Build a video generation diffusion model for dynamical motion conditioned on audio and image input.
 Evaluate the temporal alignment of given audio and generated video.

Samsung R&D Institute China-Beijing | Research Intern

- Advisor: Dr. Yang Liu
- Research Topic: Embodied AI; Reinforcement learning.
- Project Description: (1) Human-Guided Reinforcement Learning: Proposed a method that combines language hints with an object template matching module, providing human coarse-grained pre-guided attention to improve the efficiency and performance of the reinforcement learning model. (2) ALFRED benchmark, Embodied AI @ CVPR 2021. Leveraged instance segmentation and depth estimation to ground object positions on the bird's-eye-view obstacle map, generate navigation paths to the grounded objects, and integrate these with language instructions.

Teaching Experiences

University of Southern California

• Course Producer: DSCI 552 - Machine Learning for Data Science

Johns Hopkins University

Course Producer: DSCI 552 - Machine Learning for Data Science