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Abstract—Recently, people have applied the attention mech-
anism to deep reinforcement learning (DRL), which commits
to helping agents focus on crucial factors to learn the task
more effectively. However, there is still some margin between
the current attention methods and natural human attention
since evidence suggests that human attention can be pre-guided
before they perform a task, allowing humans to quickly catch
areas of important factors at the beginning of the task and
then gradually refine fine-grained attention to learn the details
during training. This allows humans to use their attention more
efficiently. In this paper, we propose an attention method that
mimics human attention for DRL in the Atari Games. The
proposed method contains a fusion attention module, for which
we build a simulated human coarse-grained pre-guided (SHCP)
attention module to assist the original fine-grained attention
of RL agents. The proposed SHCP attention module contains
information about key objects for game tasks and is implemented
as a coarse-grained attention region. The experimental results
demonstrate that our method can quickly boost performance in
the early stages and then outperform the current state-of-the-art
fine-grained attention methods significantly in sample efficiency,
just like human attention. Further analysis shows that, with
fusion attention, agents can not only capture rich features of
pre-guided attention but also extend to more improved features
after training, which suggests the pre-guided attention signal acts
as a good initializer. Therefore, we consider our work reveals a
potential and promising direction that combines human attention
signals to affect agents’ behavior via attention mechanisms.

Index Terms—deep reinforcement learning, attention mecha-
nism.

I. INTRODUCTION

When playing Atria games, humans can quickly understand
what the important objects are in the games and reach high
scores after a few attempts. A main reason is the human
attention mechanism, which allows us to ignore massive and
irrelevant information, and focus on the key factors related to
tasks [1], [2]. Inspired by this, the attention mechanism has
been widely applied in prevailing RL methods recently. They
focus on speed up the training process by mimicking human
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attention ability [3]–[6] and showing comparable performance
and great interpretability in RL attention agents [7]–[9].

These methods can indeed capture important factors during
training, while holding the limitation that the attention mod-
ules are learned from scratch at pixel-level (aka fine-grained
attention), which takes a large number of steps to first learn
how to attend at the beginning of training.

While for humans, we can receive pre-guided information
for attention training before performing the task, such as
observing the task, reading the relevant manual instructions,
and so on. In detail, when we play Atria games, we can
benefit a lot from reading the game manual to identify the
important characters or observe the inner logic to achieve a
higher score [10]. Besides, in the Atria human eye-tracking
dataset [11], people notice that humans are constantly tracking
important entities and objects during tasks. In [12], it suggests
that humans can also master games faster through the guide
of the game manual, which reminds us of the key information
and makes our attention more selective.

Inspired by these works, we wonder if the pre-guided
process can be applied to DRL. In fact, the learning process
between agents and humans holds differences in that humans
tend to pay attention to key information in a game at the
beginning, and this attention can be prompted in advance by
some game-related experience such as the game manual, which
differs from the scratch learning as agents. Thus, we tend
to explore a more human-like attention mechanism, which
we call simulated human coarse-grained pre-guided (SHCP)
attention, to strengthen the learning of RL agents, achieving
higher sample efficiency and intuitive interpretability.

In this paper, we propose a human-like attention model –
simulated human coarse-grained pre-guided attention proce-
dure. We first generate the Simulated Human Coarse-grained
Pre-guided (which we call SHCP below) attention information
through selective entities in Atria and matching modules.
Second, we use a popular top-down style fine-grained attention
as our backbone system, and it will constantly generate fine-
grained attention signals based on features at pixel-level.
Finally, we embed the SHCP attention information in the



fine-grained attention process through a fusion module we
designed and assist in the training of the RL attention agents.
We tested our method on several public Atari environments
available on OpenAI Gym. The experimental results suggest
that our method can outperform the current SOTA systems
significantly with better sample efficiency and stability while
costing meagre human effort and being extremely easy to
use. Moreover, the interpretability analysis suggests that our
method can lead the agent to not only focus on critical objects
where human attention is pointed to, but also capture more
factors vital to tasks. We believe that our work reveals a
potential and promising direction that combines human pre-
guided attention signals to affect agents’ behavior via attention
mechanisms.

II. RELATED WORK

Deep learning enables RL to scale to problems with high
dimensional state and action spaces such as video games [13]–
[15]. In particular, deep RL can now tackle tasks directly
from screen pixels, using variants of the DQN algorithm
[16] and actor-critic algorithms [17]–[21]. These successful
models are known as model-free algorithms [21], [22]. As
the game environment becomes more complicated, the time
cost and sample efficiency for these algorithms become heavy.
Although the sample complexity has substantially improved in
recent years, deep RL methods still require far more experi-
ence than human players to learn in each game environment
[10]. To improve the training process of RL agents, people
have tried to apply attention mechanism in RL agents [23]–
[26]. Generally, the attention mechanism has achieved huge
success in NLP [27], [28], computed vision [29]–[32] and
virtual application systems [33]–[35]. And for DRL agents,
the attention mechanism enables them to focus on key features
of observations, thus improving the performance and sample
efficiency [3], [5], [7]. However, there is still some margin
between the attention in the current DRL and natural human
attention. Evidence suggests that human attention can be pre-
guided at very coarse-grained scales [10], which allows hu-
mans to quickly catch areas of important targets and gradually
refine the fine-grained attention to learn the details during
training [36]. While for DRL agents, their attention modules
are all learnt from scratch and require enormous training steps.
In fact, this human pre-guided attention mechanism can be
applied to DRL agents greatly, where we generate a simulated
human coarse-grained pre-guided (SHCP) attention to assist
the original fine-grained attention mechanism of DRL agents
in this paper.

III. METHOD

Our simulated human coarse-grained pre-guided (SHCP)
attention procedure mainly contains two steps. (1) Generate
the simulated human coarse-grained pre-guided attention in-
formation consulting reliable resource such as humans playing
experience and the game manual. (2) Embed the simulated
human coarse-grained pre-guided attention information into

the self-attention process to affect the agents’ decision making
in the controller loop.

A. SHCP Attention Maps Generation

In this section, we will detailedly introduce the process
of generating simulated human coarse-grained pre-guided
(SHCP) attention information. In detail, our SHCP attention
information is attention maps (a matrix consisting of 0 and 1)
which reflect key entities in a game. Since real human attention
data is hard to obtain and we’ve confirmed that humans tend
to focus on moveable and changeable objects in games, we
tend to mimic this attention behavior and generate our SHCP
attention information as a similuated human attention signal,
which focuses on the key entities’ region. According to current
studies [10]–[12], we tend to focus on (1) key roles mentioned
in the game manual and (2) movable and changeable entities.
In other words, we only focus on movable and changeable
entities mentioned in the game manual. Besides, benefiting
from the relatively simple Atria game environment and highly
distinguishable entities in color, We design a simple and effi-
cient object tracking system suitable for the Atria environment
to generate the SHCP attention information.

1) Template Matching: Template matching is the technique
of finding the location of a given template image in a target
(larger) image. We use it to locate the potential existence of
moveable objects (template image) in the input observation
(target image). This module will return a corresponding binary
matrix (SHCP attention map) to represent the location of
entities and affect the attention behavior after being fused with
self-attention maps.

2) Collecting Templates and Generating SHCP attention
Maps: The template matching algorithm requires a template
image to locate the area in the target image. So, we first collect
templates for each entity in a given Atria environment. As
shown in Figure 2, the target image is an observation frame of
the MsPacman Atria environment. In this environment, there
are two types of moveable entities: the yellow pacman and
the four monsters (The pacman needs to eat as more beans
as possible and avoid touching the monsters to achieve higher
scores). Thus, we first cut out all the possible templates for
each type of entity: 4 template images for Pacman and 4
template images for the monsters. Next, we need to locate
the entities in the target image, and the same type of entity
will generate a single SHCP attention map which contains all
the areas of this type of entity.

Formally, given the template images, template matching can
recognize the related objects in the task scenario. With a source
observation image O ∈ RH×W×C and a template image In ∈
Rh×w×C for one specific type of entity, template matching
attention module will render a SHCP attention map matrix
An

H ∈ RH×W to represent the areas of the template image in
the observation image.

Specifically, we generate M attention map matrices for M
types of entities. Each single SHCP attention map An

H is
calculated as:



Fig. 1. The architecture of the attention fusion procedure 1) It starts with accessing the simulated human coarse-grained pre-guided attention (SHCP) attention
information via entity templates. 2) With the matching module, we can locate pre-guided template images within the whole observation and generate SHCP
attention maps. 3) With a top-down self-attention mechanism, we can also generate self-attention maps with queries from query network calculated based
on LSTM controller state and keys from the vision core, which can encode observations from the environment. 4) We fuse the simulated human coarse-
grained pre-guided attention maps with the self-attention maps to create fusion attention maps. 5) Fusion attention maps combine with values to generate final
representation of the observation and then are sent to LSTM controller to make action decisions.

Fig. 2. An example of generating SHCP attention maps in a specific Atria
environment (MsPacman here). By default, entities of the same type will be
contained in one single map (The SHCP attention signal of the four monsters
in the target image is generated in one map here).

ÃH,i,j = Oi,j · In, (1)

AH,i,j =

{
1, ÃH,i,j ≥ τ

0, ÃH,i,j < τ
, (2)

where τ > 0 is the threshold of similarity to transform the
tensor ÃH into the binary matrix attention map AH. We concat
all types of entities’ attention maps together as our SHCP
attention maps AM

H .

B. Fine-grained attention in Self-Attention Mechanism

To combine the SHCP attention information (the SHCP
attention maps generated) with RL agents’ attention, we pre-
serve a complete top-down self-attention system that contains
queries, keys, and values. A query consists of N vectors, which

are generated by the LSTM controller. It can actively search
for important information in observation.

For each step, features F ∈ Rh1×w1×c is extracted from
the observation O ∈ RH×W×C by a “vision core” denoted as
Vis(·), which is a multi-layer CNN and a recurrent layer (see
Vision Core in Figure 1).

F, svis(t) = Vis(O, svis(t− 1)), (3)

where svis(t) is the recurrent layer state in vision core of time
step t.

We split feature F along the channel dimension into two
tensors, namely keys K ∈ Rh1×w1×ck and values V ∈
Rh1×w1×cv . Keys are utilized to detect the task related
features. Once the query observes the vital key-value pattern,
it will produce an attention map, which is the weight of cor-
responding values and the result will be pushed into next step
controller. This step is similar to the self-attention mechanism
used in transformer.

An LSTM controller in the start will produce the state
sLSTM(t − 1) from the previous time step t − 1, which will
be passed through a Query Network Q into N query vectors,
names as N attention heads q1, . . . , qN ∈ Rck , matching the
channel of K ∈ Rh1×w1×ck :

Meanwhile, attention works with spatial information and we
also use a spatial encoding to summarize representation 1.

q1, . . . , qN = Q(sLSTM(t− 1)). (4)

For a single attention head qn, the fine-grained attention
map Af ∈ Rh1×w1 for the current step is calculated by two
steps.

1We use same spatial encoding method described in [7]. The spatial encoder
can preserve 2D location information for representation.



We first calculate Ãf by taking the inner product between
all locations of key tensor K and the query vector qk:

Ãn
f,i,j =

∑
c

qnc ·Ki,j,c. (5)

Then we apply the softmax function along the spatial axis
and obtain the fine-grained map Af ∈ Rh1×w1 which can
encode the spatial information for different locations from
observation:

An
f,i,j =

exp(Ãn
f,i,j)∑

i′,j′ exp(Ã
n
f,i′,j′)

. (6)

C. Attention Fusion Module

Our goal is to aggregate information of SHCP attention
maps with the fine-grained attention maps learned from ob-
servation. We fuse the SHCP attention maps and self-attention
maps by a fusion module.

1) Fusion Module: First, the fusion module concatenates
two groups of attention maps together along channel dimen-
sion into a tensor Ãn:

ÃN = Concat(AN
f , AM

H ), (7)

where each map of Ah is resized to the same size as AN
self.

In order to blend the information of two sources of attention
maps thoroughly and match the dimension of tensor V , we
reduce the dimension of ÃN by a convolution block and obtain
the final attention map AN ∈ Rh1×w1×N for N attention
heads.

AN = Conv(ÃN ). (8)

Then, the weighted state representation of observation Rn ∈
Rcv for each attention head is the summation of point product
between every new map and the values:

RN
l =

∑
i,j

AN
i,j · Vi,j,l, (9)

where l = 1, . . . , cv .
a) Fusion Attention for Controller Loop: The weighted

state representation RN of each attention head qN is concate-
nated to R and fed into the LSTM controller:

o(t), sLSTM(t) = LSTM(R, q, sLSTM(t− 1)) (10)

Finally, the output is utilized to fit the policy network
and value function in actor-critic RL. The controller LSTM
is followed by a policy and a value function network to
output actions and state values. The controller takes the query,
answer, reward, and a one-hot encoding of action from the
previous state as its input. In summary, our method generates
and combines the SHCP attention information with the fine-
grained attention in the self-attention mechanism for RL agents
to affect the decision-making controller.

IV. EXPERIMENT

In this section, we describe our experiment setup, including
environment, evaluation metrics, baseline systems, and model
implementation details.

A. Environment
We conduct our experiments on mainly 4 popular Atari

environments available on the OpenAI gym platform, which
is a common setting for RL research, including MsPacman,
KungfuMaster, Seaquest, and Pong. The size of a single
observation frame in these environments is (210,160,3), and
the player can control the movable agents to play the games2.
Each game can output a score to evaluate the performance
of RL agents immediately. In the four gym games, a better
RL agent is considered to achieve higher scores with fewer
training steps.

B. Evaluation Metrics
We evaluate performance using two metrics defined and

employed in previous work [37]:
- Average reward, which is the area under the reward curve

divided by the total steps.
- Asymptotic performance, which is the rewards over 10

episodes of the same training steps.
The first metric emphasizes the sample efficiency that a

method can achieve during learning in the target domain within
constant steps. The second one evaluates the ability to achieve
optimal performance on the task. In our case, we set 5e7 as
our total steps. In general, an ideal method should perform
well on both the two metrics above.

C. Baseline Systems
In order to explore the effectiveness of our fusion attention

reinforcement learning system, we consider the following
different conditions for ablation study:

· LSTM Controller with Non-attention. We use the LSTM
version of IMPALA implement as one of our benchmark
system. IMPALA is an open-source popular RL library
provided by DeepMind [21].

· Top-Down Self-attention. We employ a RL with top-
down self-attention method as our another benchmark,
which is open-source and competitive with several state-
of-the-art baselines [7].

D. Experimental Settings
The vision core consists of a 3-layer CNN followed by a

convolutional LSTM. The query network is a 3-layer MLP,
and it produces 4 attention queries ( See Appendix A.1 for the
full architecture of the network). We use an actor-critic setup, a
VTRACE loss with an RMSProp optimizer, and the IMPALA
to train our agents. To perform our method, we prepare the
different SHCP attention maps for specific task environments.
An example is shown in Figure 2. The number of elements
for each environment is shown in Table I. For experiments,
we used four GTX2080 GPUs for about 60 hours.

E. Experimental Results
Figure 3 shows the score curves along with 5e7 steps and

Table II and Table III shows results evaluated by the metrics

2We use skip-frame setting here, system applies same action to interact
with environment in each 4 frames. Frameskip is the number of frames an
action is repeated before a new action is selected.



Fig. 3. Reward curves for four different Atari games. The orange line denotes our method, the blue denotes the non-attention LSTM RL and the green
denotes the top-down self-attention RL system. The results show that our method can outperform the other two methods in sample efficiency by a great deal.
Meanwhile, our method reached the highest scores in all four of the game environments.

TABLE I
THE HYPER-PARAMETERS FOR EACH TASK. MAPS INDICATES THE

NUMBER OF SHCP ATTENTION MAPS, IMAGES INDICATES THE NUMBER
OF TEMPLATE IMAGES WE USED.

Env Maps Images
MsPacmans 2 8

Pong 2 2
Seaquest 3 5
Kungfu
master 2 6

above. In general, our method can outperform LSTM non-
attention and top-down self-attention methods significantly.
The score curve and average reward (see Table III) results
suggest our method has much better sample efficiency. In
particular, we observe that in most of the tasks, the perfor-
mance improves quite fast in the early stages. In our opinion,
the SHCP attention information can guide the fine-grained
attention in an agent to find the key factors for the task at the
beginning, instead of searching blindly and learning the bias
from scratch. According to the asymptotic results (see Table
II), our method can output actions with less variance than the
original top-down self-attention method, which contains only
fine-grained attention information. The reason behind this is
that our model provides more concentrated focus areas than the
fine-grained self-attention learning within the RL framework,
which is rather unstable due to the nature of RL. Finally, our
method achieves extraordinary improvement with negligible
human effort cost (see Table I). In the following parts, we will

TABLE II
EXPERIMENTAL RESULTS EVALUATED USING ASYMPTOTIC METRIC.

Env No-Att Self-Att Prior-Att
MsPacman 663±49 1589±89 2583±153

Kungfu
Master 3872±463 19862±5242 24910±3371

Seaquest 267±43 1668±121 1842±12

Pong −20±0.31 19±0.78 21±0

TABLE III
EXPERIMENTAL RESULTS EVALUATED USING AVERAGED REWARD

METRIC.

Env Non-Att Self-Att Prior-Att
MsPacman 644.7 1094.5 1629.7

KungfuMaster 3458.2 12232.5 18444.8
Seaquest 296.1 747.6 1304

Pong 0.57 11.2 33.5

explain why our model works with a series of visualization
results.

F. Behavior of Fusion Attention

Figure 4 shows the difference between the fusion attention
map and the fine-grained attention map corresponding to the
same observation frame in the game MsPacman. The fusion
attention map comes from integrating the SHCP attention map
with the preserved fine-grained attention map, and its focus
area is highly concentrated. A sensible reason is that the
fusion attention map is strongly affected by the SHCP attention
information and reinforced during the training process as



Fig. 4. This figure shows the visualization of 4 attention heads of fine-grained
attention map (top) and the fusion attention map (down) respectively. The
image left is the input game frame. In the visualization result, we can clearly
observe that the fusion attention capture both the coarse-grained areas which
containing moveable entities and the background environment information.
In fact, it’s an excellent combination of the SHCP attention information and
the fine-grained attention information. The results also reflects that the SHCP
attention information assists the fine-grained attention process to only focus
on details, reducing the search space and difficulty of learning.

the areas that contain key entities are relevant to the task.
The SHCP attention information gives the agent advantages
to quickly improve performance in the early stage since it
accesses to the priors of key factors via SHCP attention signal.

G. SHCP Attention Signal Comparison

The observations above naturally raise a doubt about
whether the fusion attention makes the agent only focus on
the SHCP attention information and whether they can learn
more from training. To explain this issue, we show a series of
actions of our fusion attention head in the game (see Figure 5).
For this task, the “player” and the “fighter” are two types of
moveable entities related to images marked in the black box.
In this scenario, the fusion attention heads tend to notice the
areas where fights are likely to happen instead of only tracking
the player and the other fighters. These observations further
indicate that the SHCP attention information acts more like
a guidance signal than a supervised signal. In other words,
agents can learn better from interaction by treating SHCP
attention information as a beneficial assistance information.

V. CONCLUSION

We explore and propose a human-like coarse-grained pre-
guided attention to assist fine-grained reinforcement learning
attention agents. The results show we can achieve significant
improvement in several 2D Atari games, and the further
analysis suggests that our SHCP attention information can
effectively combine with the top-down self-attention mech-
anism, fusing the SHCP attention information with the fine-
grained attention information to assist training for RL agents.
Moreover, we consider our SHCP attention signal to act
more like a guidance signal than a supervised signal, which
providing a reliable source of information to help agents
quickly catch the coarse-grained information and then learn
fine-grained attention faster. Besides, our fusion attention map
holds reliable interpretability, which reveals that the SHCP
attention signal can greatly assist the RL agents to attend to

Fig. 5. Fusion attention behaviors for KungFu-Master environment. Agent
focuses on the area conflicts may happen rather than “player” or “fighter”
where the SHCP attention focus on.

key entities and learn better. We believe that our work reveals
a potential and promising direction that combines human pre-
guided attention signals to affect agents’ behavior via attention
mechanisms.
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